1,468 research outputs found

    Digitally-Assisted RF IC Design Techniques for Reliable Performance

    Get PDF
    Semiconductor industries have competitively scaled down CMOS devices to attain benefits of low cost, high performance, and high integration density in digital integrated circuits. On the other hand, deep scaled technologies inextricably accompany a large process variation, supply voltage scaling, and reduction in breakdown voltages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely affects its reliability due to large performance variation and limited linearity. For addressing the issues related to variations and linearity, this research proposes the following digitally-assisted RF circuit design techniques: self-calibration system for RF phase shifters and wide dynamic range LNAs. Due to PVT variations in scaled technologies, RF phase shifter design becomes more challenging with device scaling. In the proposed self-calibration topology, we devised a novel phase sensing method and a pulsewidth-to-digital converter. The feedback controller is also designed in digital domain, which is robust to PVT variations. These unique techniques enable a sensing/control loop tolerant to PVT variations. The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the calibration, the estimated phase error is less than 2 degrees. To overcome the linearity issue in scaled technologies, a digitally-controlled dual-mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to 6GHz) LNA can be toggled between high-gain and high-linearity modes by digital control bits according to the input signal power. A compact design, which provides negligible performance degradation by additional circuitry, is achieved by sharing most of the components between the two operation modes. The narrowband and the wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respectively

    RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis

    Get PDF
    AbstractIt is known that mammalian rpS3 functions as a DNA repair endonuclease and ribosomal protein S3. It was also observed that several ribosomal proteins or DNA repair enzymes are related to apoptosis. We report here a third function of rpS3, induction of apoptosis. The localization of green fluorescent protein (GFP)-rpS3 is changed to the nuclear membrane when lymphocytic cells undergo rpS3-induced apoptosis. Transient expression of GFP-rpS3 activates caspase-8/caspase-3 and sensitizes cytokine-induced apoptosis. Deletion analysis reveals that the two functions of rpS3, DNA repair and apoptosis, use independent functional domains

    Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability.

    Get PDF
    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer's disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1-40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3-42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3-42 and Aβ1-42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3-42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3-42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3-42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability

    Seeing Through the Conversation: Audio-Visual Speech Separation based on Diffusion Model

    Full text link
    The objective of this work is to extract target speaker's voice from a mixture of voices using visual cues. Existing works on audio-visual speech separation have demonstrated their performance with promising intelligibility, but maintaining naturalness remains a challenge. To address this issue, we propose AVDiffuSS, an audio-visual speech separation model based on a diffusion mechanism known for its capability in generating natural samples. For an effective fusion of the two modalities for diffusion, we also propose a cross-attention-based feature fusion mechanism. This mechanism is specifically tailored for the speech domain to integrate the phonetic information from audio-visual correspondence in speech generation. In this way, the fusion process maintains the high temporal resolution of the features, without excessive computational requirements. We demonstrate that the proposed framework achieves state-of-the-art results on two benchmarks, including VoxCeleb2 and LRS3, producing speech with notably better naturalness.Comment: Project page with demo: https://mm.kaist.ac.kr/projects/avdiffuss

    Inhaled corticosteroid use and risks of lung cancer and laryngeal cancer

    Get PDF
    SummaryBackgroundChronic inflammation has been implicated in the pathogenesis of several cancers, including lung and laryngeal cancer. The objective of the study is to elucidate the association between ICS use and diagnosis of lung and laryngeal cancer.MethodsA nested case–control study based on the Korean national claims database included new adult users of inhaled medications between January 1, 2007, and December 31, 2010. Patients diagnosed with lung cancer or laryngeal cancer after enrollment were identified as cases and up to five control individuals matched for age, sex, diagnosis of asthma or COPD, Charlson Comorbidity Index scores, number of health care visits, and initiation date were selected.ResultsFrom the 792,687 eligible cohort, 9177 individuals diagnosed with lung cancer were matched with 37,048 controls. Additionally, 408 laryngeal cancer patients and 1651 controls were matched. ICS use was associated with a decreased rate of lung cancer diagnosis [adjusted odds ratio (aOR), 0.79; 95% confidence interval (CI), 0.69–0.90]. The inverse association between ICS use and lung cancer risk was dose dependent (P < 0.0001 for the trend). However, no reduction in the risk of laryngeal cancer among ICS users was identified (aOR, 1.06; 95% CI, 0.62–1.18).ConclusionThe use of ICS is associated with a reduced risk of lung cancer but not of laryngeal cancer

    Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling

    Get PDF
    Cancer-associated fibroblasts (CAFs) constitute a major compartment of the tumor microenvironment. In the present study, we investigated the role for CAFs in breast cancer progression and underlying molecular mechanisms. Human breast cancer MDA-MB-231 cells treated with the CAF-conditioned media manifested a more proliferative phenotype, as evidenced by enhanced messenger RNA (mRNA) expression of Cyclin D1, c-Myc, and proliferating cell nuclear antigen. Analysis of data from The Cancer Genome Atlas revealed that fibroblast growth factor-2 (FGF2) expression was well correlated with the presence of CAFs. We noticed that the mRNA level of FGF2 in CAFs was higher than that in normal fibroblasts. FGF2 exerts its biological effects through interaction with FGF receptor 1 (FGFR1). In the breast cancer tissue array, 42% estrogen receptor-negative patients coexpressed FGF2 and FGFR1, whereas only 19% estrogen receptor-positive patients exhibited coexpression. CAF-stimulated MDA-MB-231 cell migration and invasiveness were abolished when FGF2-neutralizing antibody was added to the conditioned media of CAFs. In a xenograft mouse model, coinjection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced tumor growth, and this was abrogated by silencing of FGFR1 in cancer cells. In addition, treatment of MDA-MB-231 cells with FGF2 enhanced expression of Cyclin D1, a key molecule involved in cell cycle progression. FGF2-induced cell migration and upregulation of Cyclin D1 were abolished by siRNA-mediated FGFR1 silencing. Taken together, the above findings suggest that CAFs promote growth, migration and invasion of MDA-MB-231 cells via the paracrine FGF2-FGFR1 loop in the breast tumor microenvironment.

    Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    Get PDF
    We have explored a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single crystal Sr2_2VO3_3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a non-trivial C4C_4 (2×\times2) order, not achievable by thermal excitation with unpolarized current. Our tunneling spectroscopy study shows that the induced C4C_4 (2×\times2) order has characteristics of plaquette antiferromagnetic order in Fe layer and strongly suppressed superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4C_4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.Comment: 33 pages, 16 figure
    corecore